Arbeitspapier

Economic analysis using higher frequency time series: Challenges for seasonal adjustment

The COVID-19 pandemic has increased the need for timely and granular information to assess the state of the economy in real time. Weekly and daily indices have been constructed using higher frequency data to address this need. Yet the seasonal and calendar adjustment of the underlying time series is challenging. Here, we analyse the features and idiosyncracies of such time series relevant in the context of seasonal adjustment. Drawing on a set of time series for Germany - namely hourly electricity consumption, the daily truck toll mileage, and weekly Google Trends data - used in many countries to assess economic development during the pandemic, we discuss obstacles, difficulties, and adjustment options. Furthermore, we develop a taxonomy of the central features of seasonal higher frequency time series.

ISBN
978-3-95729-863-8
Sprache
Englisch

Erschienen in
Series: Deutsche Bundesbank Discussion Paper ; No. 53/2021

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Econometric Software
General Outlook and Conditions
Thema
COVID-19
DSA
Calendar adjustment
Time series characteristics

Ereignis
Geistige Schöpfung
(wer)
Ollech, Daniel
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ollech, Daniel
  • Deutsche Bundesbank

Entstanden

  • 2021

Ähnliche Objekte (12)