Arbeitspapier

Multiple disorder problems for Wiener and compound Poisson processes with exponential jumps

The multiple disorder problem consists of finding a sequence of stopping times which are as close as possible to the (unknown) times of 'disorder' when the distribution of an observed process changes its probability characteristics. We present a formulation and solution of the multiple disorder problem for a Wiener and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial optimal switching problems to the corresponding coupled optimal stopping problems and solving the equivalent coupled free-boundary problems by means of the smooth- and continuous-fit conditions.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2006,074

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Gapeev, Pavel V.
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Gapeev, Pavel V.
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2006

Ähnliche Objekte (12)