Arbeitspapier

Two-stage instrumental variable estimation of linear panel data models with interactive effects

This paper puts forward a new instrumental variables (IV) approach for linear panel datamodels with interactive effects in the error term and regressors. The instruments are transformed regressors and so it is not necessary to search for external instruments. The proposed method asymptotically eliminates the interactive effects in the error term and in the regressors separately in two stages. We propose a two-stage IV (2SIV) and a mean-group IV (MGIV) estimator for homogeneous and heterogeneous slope models, respectively. The asymptotic analysis for the models with homogeneous slopes reveals that: (i) theÍNT-consistent 2SIV estimatoris free from asymptotic bias that could arise due to the correlation between the regressors and the estimation error of the interactive effects; (ii) under the same set of assumptions, existing popular estimators, which eliminate interactive effects either jointly in the regressors and the error term, or only in the error term, can suffer from asymptotic bias; (iii) the proposed 2SIV estimator is asymptotically as efficient as the bias-corrected version of estimators that eliminate interactive effects jointly in the regressors and the error, whilst; (iv) the relative efficiency of the estimators that eliminate interactive effects only in the error term is in determinate. A Monte Carlo study confirms good approximation quality of our asymptotic results and competent performance of 2SIV and MGIV in comparison with existing estimators. Furthermore, it demonstrates that the bias-corrections can be imprecise and noticeably inflate the dispersion of the estimators in finite samples.

Sprache
Englisch

Erschienen in
Series: ISER Discussion Paper ; No. 1101

Klassifikation
Wirtschaft
Estimation: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Thema
Large panel data
interactive effects
common factors
principal components analysis
instrumental variables

Ereignis
Geistige Schöpfung
(wer)
Cui, Guowei
Norkuté, Milda
Sarafidis, Vasilis
Yamagata, Takashi
Ereignis
Veröffentlichung
(wer)
Osaka University, Institute of Social and Economic Research (ISER)
(wo)
Osaka
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cui, Guowei
  • Norkuté, Milda
  • Sarafidis, Vasilis
  • Yamagata, Takashi
  • Osaka University, Institute of Social and Economic Research (ISER)

Entstanden

  • 2020

Ähnliche Objekte (12)