Arbeitspapier

Calibration of self-decomposable Lévy models

We study the nonparametric calibration of exponential, self-decomposable Lévy models whose jump density can be characterized by the k-function, which is typically nonsmooth at zero. On the one hand the estimation of the drift, the activity measure a := k(0+) + k(0-) and analog parameters for the derivatives are considered and on the other hand we estimate the k-function outside of a neighborhood of zero. Minimax convergence rates are derived, which depend on a. Therefore, we construct estimators adapting to this unknown parameter. Our estimation method is based on spectral representations of the observed option prices and on regularization by cutting off high frequencies. Finally, the procedure is applied to simulations and real data.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2011-073

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Contingent Pricing; Futures Pricing; option pricing
Subject
adaptation
European option
infinite activity jump process
minimax rates
non linear inverse problem
self-decomposability.
Optionspreistheorie
Stochastischer Prozess
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Trabs, Mathias
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2011

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Trabs, Mathias
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2011

Other Objects (12)