Arbeitspapier

A note on the construction of generalized Tukey-type transformations

One possibility to construct heavy tail distributions is to directly manipulate a standard Gaussian random variable by means of transformations which satisfy certain conditions. This approach dates back to Tukey (1960) who introduces the popular H-transformation. Alternatively, the K-transformation of MacGillivray & Cannon (1997) or the J-transformation of Fischer & Klein (2004) may be used. Recently, Klein & Fischer (2006) proposed a very general power kurtosis transformation which includes the above-mentioned transformations as special cases. Unfortunately, their transformation requires an infinite number of unknown parameters to be estimated. In contrast, we introduce a very simple method to construct êexible kurtosis transformations. In particular, manageable superstructures are suggested in order to statistically discriminate between H-, J-and K-distributions (associated to H-, J- and K-transformations).

Language
Englisch

Bibliographic citation
Series: Diskussionspapier ; No. 73/2006

Classification
Wirtschaft
Subject
Generalized kurtosis transformation
H-transformation

Event
Geistige Schöpfung
(who)
Fischer, Matthias J.
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie
(where)
Nürnberg
(when)
2006

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fischer, Matthias J.
  • Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie

Time of origin

  • 2006

Other Objects (12)