Artikel
Statistical properties of estimators for the log-optimal portfolio
The best constant re-balanced portfolio represents the standard estimator for the log-optimal portfolio. It is shown that a quadratic approximation of log-returns works very well on a daily basis and a mean-variance estimator is proposed as an alternative to the best constant re-balanced portfolio. It can easily be computed and the numerical algorithm is very fast even if the number of dimensions is high. Some small-sample and the basic large-sample properties of the estimators are derived. The asymptotic results can be used for constructing hypothesis tests and for computing confidence regions. For this purpose, one should apply a finite-sample correction, which substantially improves the large-sample approximation. However, it is shown that the impact of estimation errors concerning the expected asset returns is serious. The given results confirm a general rule, which has become folklore during the last decades, namely that portfolio optimization typically fails on estimating expected asset returns.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Mathematical Methods of Operations Research ; ISSN: 1432-5217 ; Volume: 92 ; Year: 2020 ; Issue: 1 ; Pages: 1-32 ; Berlin, Heidelberg: Springer
- Klassifikation
-
Wirtschaft
Estimation: General
Portfolio Choice; Investment Decisions
- Thema
-
Best constant re-balanced portfolio
Estimation risk
Growth-optimal portfolio
Log-optimal portfolio
Mean-variance optimization
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Frahm, Gabriel
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer
- (wo)
-
Berlin, Heidelberg
- (wann)
-
2020
- DOI
-
doi:10.1007/s00186-020-00701-1
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Frahm, Gabriel
- Springer
Entstanden
- 2020