Prediction of Fluorescent Ki67 Staining in 3D Tumor Spheroids

Abstract: 3D cell culture models are important tools for the development and testing of new therapeutics. In combination with immunoassays and 3D confocal microscopy, crucial information like morphological or metabolic changes can be examined during drug testing. However, a common limitation of immunostainings is the number of dyes that can be imaged simultaneously, as overlaps in the spectral profiles of the different dyes may result in cross talk. We therefore present a 3D deep learning method, able to predict fluorescent stainings of specific antigens on the basis of a nuclei staining. Using the proliferation marker Ki67, we showed that the presented model was able to predict the Ki67 staining with a strong correlation to the real signal. Additional analysis showed, that the model was not relying on signal cross talk. This approach, based on staining of the cell nuclei and subsequent prediction of the target antigen, could reduce the number of parallel antigen stains to a minimum and incompatible staining panels could be circumvented in the future.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Prediction of Fluorescent Ki67 Staining in 3D Tumor Spheroids ; volume:8 ; number:2 ; year:2022 ; pages:305-308 ; extent:4
Current directions in biomedical engineering ; 8, Heft 2 (2022), 305-308 (gesamt 4)

Urheber
Bruch, Roman
Vitacolonna, Mario
Rudolf, Rüdiger
Reischl, Markus

DOI
10.1515/cdbme-2022-1078
URN
urn:nbn:de:101:1-2022090315405002969184
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Bruch, Roman
  • Vitacolonna, Mario
  • Rudolf, Rüdiger
  • Reischl, Markus

Ähnliche Objekte (12)