Buchbeitrag

Authorship attribution with convolutional neural networks and POS-eliding

We use a convolutional neural network to perform authorship identification on a very homogeneous dataset of scientific publications. In order to investigate the effect of domain biases, we obscure words below a certain frequency threshold, retaining only their POS-tags. This procedure improves test performance due to better generalization on unseen data. Using our method, we are able to predict the authors of scientific publications in the same discipline at levels well above chance.

Authorship attribution with convolutional neural networks and POS-eliding

Urheber*in: Hitschler, Julian; van den Berg, Esther; Rehbein, Ines

Attribution 4.0 International

Language
Englisch

Subject
Autorschaft
Computerlinguistik
Sprache

Event
Geistige Schöpfung
(who)
Hitschler, Julian
van den Berg, Esther
Rehbein, Ines
Event
Veröffentlichung
(who)
Stroudsburg PA, USA : The Association for Computational Linguistics
(when)
2018-10-02

URN
urn:nbn:de:bsz:mh39-80252
Last update
06.03.2025, 9:00 AM CET

Data provider

This object is provided by:
Leibniz-Institut für Deutsche Sprache - Bibliothek. If you have any questions about the object, please contact the data provider.

Object type

  • Buchbeitrag

Associated

  • Hitschler, Julian
  • van den Berg, Esther
  • Rehbein, Ines
  • Stroudsburg PA, USA : The Association for Computational Linguistics

Time of origin

  • 2018-10-02

Other Objects (12)