Artikel

Applying complexity theory: A primer for identifying and modeling firm anomalies

This essay elaborates on the usefulness of embracing complexity theory, modeling outcomes rather than directionality, and modeling complex rather than simple outcomes in strategic management. Complexity theory includes the tenet that most antecedent conditions are neither sufficient nor necessary for the occurrence of a specific outcome. Identifying a firm by individual antecedents (i.e., non-innovative versus highly innovative, small versus large size in sales or number of employees, or serving local versus international markets) provides shallow information in modeling specific outcomes (e.g., high sales growth or high profitability)-even if directional analyses (e.g., regression analysis, including structural equation modeling) indicates that the independent (main) effects of the individual antecedents relate to outcomes directionally-because firm (case) anomalies almost always occur to main effects. Examples: a number of highly innovative firms have low sales while others have high sales and a number of non-innovative firms have low sales while others have high sales. Breaking-away from the current dominant logic of directionality testing-null hypotheses statistic testing (NHST)-to embrace somewhat precise outcome testing (SPOT) is necessary for extracting highly useful information about the causes of anomalies-associations opposite to expected and "statistically significant" main effects. The study of anomalies extends to identifying the occurrences of four-corner strategy outcomes: firms doing well in favorable circumstances, firms doing badly in favorable circumstances, firms doing well in unfavorable circumstances, and firms doing badly in unfavorable circumstances. Models of four-corner strategy outcomes advances strategic management beyond the current dominant logic of directional modeling of single outcomes.

Sprache
Englisch

Erschienen in
Journal: Journal of Innovation & Knowledge (JIK) ; ISSN: 2444-569X ; Volume: 3 ; Year: 2018 ; Issue: 1 ; Pages: 9-25 ; Amsterdam: Elsevier

Klassifikation
Management
IT Management
Thema
Anomalies
Complexity
Knowledge
Directionality
Modeling
Outcomes
Strategy

Ereignis
Geistige Schöpfung
(wer)
Woodside, Arch G.
Nagy, Gábor
Megehee, Carol M.
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2018

DOI
doi:10.1016/j.jik.2017.07.001
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Woodside, Arch G.
  • Nagy, Gábor
  • Megehee, Carol M.
  • Elsevier

Entstanden

  • 2018

Ähnliche Objekte (12)