Mobile phone indoor scene features recognition localization method based on semantic constraint of building map location anchor

Abstract: Visual features play a key role in indoor positioning and navigation services as the main semantic information to help people understand the environment. However, insufficient semantic constraint information and mismatching localization without building map have hindered the ubiquitous application services. To address the problem, we propose a smartphone indoor scene features recognition localization method with building map semantic constraints. First, based on Geographic Information System and Building Information Modeling techniques, a geocoded entity library of building Map Location Anchor (MLA) is constructed, which is able to provide users with “immersive” meta-building-map and semantic anchor constraints for mobile phone positioning when map matching. Second, using the MYOLOv5s deep learning model improved on indoor location scenario, the nine types of ubiquitous anchor features in building scenes are recognized in real time by acquiring video frames from the smartphone camera. Lastly, the spatial locations of the ubiquitous indoor facilities obtained using smartphone video recognition are matched with the MLA P3P algorithm to achieve real-time positioning and navigation. The experimental results show that the MLA recognition accuracy of the improved MYOLOv5s is 97.2%, and the maximum localization error is within the range of 0.775 m and confined to the interval of 0.5 m after applying the Building Information Modeling based Positioning and Navigation road network step node constraint, which can effectively achieve high positioning accuracy in the building indoor scenarios with adequate MLA and road network constraint.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Mobile phone indoor scene features recognition localization method based on semantic constraint of building map location anchor ; volume:14 ; number:1 ; year:2022 ; pages:1268-1289 ; extent:22
Open Geosciences ; 14, Heft 1 (2022), 1268-1289 (gesamt 22)

Urheber
Jianhua, Liu
Guoqiang, Feng
Jingyan, Luo
Danqi, Wen
Zheng, Chen
Nan, Wang
Baoshan, Zeng
Xiaoyi, Wang
Xinyue, Li
Botong, Gu

DOI
10.1515/geo-2022-0427
URN
urn:nbn:de:101:1-2022110413050602865964
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Jianhua, Liu
  • Guoqiang, Feng
  • Jingyan, Luo
  • Danqi, Wen
  • Zheng, Chen
  • Nan, Wang
  • Baoshan, Zeng
  • Xiaoyi, Wang
  • Xinyue, Li
  • Botong, Gu

Ähnliche Objekte (12)