Independent Control and Path Planning of Microswimmers with a Uniform Magnetic Field
Artificial bacteria flagella (ABFs) are magnetic helical microswimmers that can be remotely controlled via a uniform, rotating magnetic field. Previous studies have used the heterogeneous response of microswimmers to external magnetic fields for achieving independent control. Herein, analytical and reinforcement learning control strategies for path planning to a target by multiple swimmers using a uniform magnetic field are introduced. The comparison of the two algorithms shows the superiority of reinforcement learning in achieving minimal travel time to a target. The results demonstrate, for the first time, the effective independent navigation of realistic microswimmers with a uniform magnetic field in a viscous flow field.
- Location
 - 
                Deutsche Nationalbibliothek Frankfurt am Main
 
- Extent
 - 
                Online-Ressource
 
- Language
 - 
                Englisch
 
- Bibliographic citation
 - 
                Independent Control and Path Planning of Microswimmers with a Uniform Magnetic Field ; day:26 ; month:12 ; year:2021 ; extent:7
Advanced intelligent systems ; (26.12.2021) (gesamt 7)
 
- DOI
 - 
                
                    
                        10.1002/aisy.202100183
 
- URN
 - 
                
                    
                        urn:nbn:de:101:1-2021122714024362966725
 
- Rights
 - 
                
                    
                        Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
 
- Last update
 - 
                
                    
                        15.08.2025, 7:35 AM CEST
 
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.