Arbeitspapier

Estimation of toxicokinetic population parameters in a four-stage hierarchical model

A basic part in the risk assessment of potential carcinogens is the determination of toxicokinetic parameters. The partition of the xenobiotic in the body of experimental animals is a first step of the biochemical pathway of the formation of DNA adducts which might lead to the development of cancer. Fundamental in the extrapolation from one species to another is the characterisation of processes by means of population parameters. Nevertheless, the consideration of individual parameters varying between repeated experiments and different doses is of great importance to obtain a more precise insight into the variability structure of the process so that a valid basis for further research is the final result. Two nonlinear four-stage hierarchical models for a repeated measurement design and for repeated exposures to different doses are presented. The estimation of the individual and population parameters as well as of the covariance matrices is performed by an EM algorithm.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2000,01

Subject
ethylene
ethylene oxide
risk assessment
toxicokinetics
population parameters
two-compartment model
nonlinear hierarchical model
Bayes estimates
EM algorithm
repeated measurement

Event
Geistige Schöpfung
(who)
Selinski, Silvia
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2000

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Selinski, Silvia
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2000

Other Objects (12)