Arbeitspapier
Estimating smooth transition autoregressive models with GARCH errors in the presence of extreme observations and outliers
This paper investigates several empirical issues regarding quasimaximum likelihood estimation of Smooth Transition Autoregressive (STAR) models with GARCH errors, specifically STAR-GARCH and STAR-STGARCH. Convergence, the choice of different algorithms for maximising the likelihood function, and the sensitivity of the estimates to outliers and extreme observations, are examined using daily data for S&P 500, Heng Seng and Nikkei 225 for the period January 1986 to April 2000.
- Sprache
-
Englisch
- Erschienen in
-
Series: ISER Discussion Paper ; No. 539
- Klassifikation
-
Wirtschaft
- Thema
-
ARCH-Modell
Theorie
Maximum-Likelihood-Methode
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chan, Felix
MacAleer, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
Osaka University, Institute of Social and Economic Research (ISER)
- (wo)
-
Osaka
- (wann)
-
2001
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chan, Felix
- MacAleer, Michael
- Osaka University, Institute of Social and Economic Research (ISER)
Entstanden
- 2001