Artikel

Illuminating ARIMA model-based seasonal adjustment with three fundamental seasonal models

Our starting place is the first order seasonal autoregressive model. Its series are shown to have canonical model-based decompositions whose finite-sample estimates, filters, and error covariances have simple revealing formulas from basic linear regression.We obtain analogous formulas for seasonal random walks, extending some of the results of Maravall and Pierce (J Time Series Anal, 8:177-293, 1987). The seasonal decomposition filters of the biannual seasonal random walk have formulas that explicitly reveal which deterministic functions they annihilate and which they reproduce, directly illustrating very general results of Bell (J Off Stat, 28:441-461, 2012; Center for Statistical Research and Methodology, Research Report Series, Statistics #2015-03, U.S. Census Bureau,Washington, D.C. https://www.census.gov/srd/papers/pdf/RRS2015-03, 2015). Other formulas express phenomena heretofore lacking such concrete expression, such as the much discussed negative autocorrelation at the first seasonal lag quite often observed in differenced seasonally adjusted series. An innovation that is also applied to airlinemodel seasonal decompositions is the effective use of signs of lag one and first-seasonal-lag autocorrelations (after differencing) to indicate, in a formal way, where smoothness is increased by seasonal adjustment and where its effect is opposite.

Sprache
Englisch

Erschienen in
Journal: SERIEs - Journal of the Spanish Economic Association ; ISSN: 1869-4195 ; Volume: 7 ; Year: 2016 ; Issue: 1 ; Pages: 11-52 ; Heidelberg: Springer

Klassifikation
Wirtschaft
Thema
ARIMA models
Signal extraction smoothness
Timeseries

Ereignis
Geistige Schöpfung
(wer)
Findley, David F.
Lytras, Demetra P.
Maravall Herrero, Agustin
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2016

DOI
doi:10.1007/s13209-016-0139-4
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Findley, David F.
  • Lytras, Demetra P.
  • Maravall Herrero, Agustin
  • Springer

Entstanden

  • 2016

Ähnliche Objekte (12)