Arbeitspapier

The Fiction of Full BEKK

The purpose of the paper is to show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, provides the regularity conditions that arise from the underlying random coefficient autoregressive process, and for which the (quasi-) maximum likelihood estimates have valid asymptotic properties under the appropriate parametric restrictions. The paper provides a discussion of the stochastic processes, regularity conditions, and asymptotic properties of univariate and multivariate GARCH models. It is shown that the Full BEKK model, which in practice is estimated almost exclusively, has no underlying stochastic process, regularity conditions, or asymptotic properties.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 17-015/III

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Financial Econometrics
Thema
Random coefficient stochastic process
Off-diagonal parametric restrictions
Diagonal and Full BEKK
Regularity conditions
Asymptotic properties
Conditional volatility
Univariate and multivariate models.

Ereignis
Geistige Schöpfung
(wer)
Chang, Chia-Lin
McAleer, Michael
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chang, Chia-Lin
  • McAleer, Michael
  • Tinbergen Institute

Entstanden

  • 2017

Ähnliche Objekte (12)