On the Cauchy problem of a degenerate parabolic-hyperbolic PDE with Lévy noise

Abstract: In this article, we deal with the stochastic perturbation of degenerate parabolic partial differential equations (PDEs). The particular emphasis is on analyzing the effects of a multiplicative Lévy noise on such problems and on establishing a well-posedness theory by developing a suitable weak entropy solution framework. The proof of the existence of a solution is based on the vanishing viscosity technique. The uniqueness of the solution is settled by interpreting Kruzhkov’s doubling technique in the presence of a noise.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
On the Cauchy problem of a degenerate parabolic-hyperbolic PDE with Lévy noise ; volume:8 ; number:1 ; year:2017 ; pages:809-844 ; extent:36
Advances in nonlinear analysis ; 8, Heft 1 (2017), 809-844 (gesamt 36)

Creator
Biswas, Imran H.
Majee, Ananta K.
Vallet, Guy

DOI
10.1515/anona-2017-0113
URN
urn:nbn:de:101:1-2405021550334.902225560855
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:49 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Biswas, Imran H.
  • Majee, Ananta K.
  • Vallet, Guy

Other Objects (12)