Biomimetic Surface Nanoengineering of Biodegradable Zn‐Based Orthopedic Implants for Enhanced Biocompatibility and Immunomodulation

Abstract: Zinc (Zn) is gaining increased recognition as a biodegradable metal in biomedical applications but clinical translation is limited due to its poor biocompatibility. This study addresses these issues through an innovative biomimetic strategy, introducing an efficient surface nanoengineering approach that creates nano‐geometric features and chemical compositions by modulating the exposure time to a biological medium – Dulbecco's Modified Eagle Medium (DMEM). These nanoengineered Zn implants exhibited tunable degradation rates. The nanostructures enhanced human osteoblast attachment, proliferation, and differentiation following direct contact, and improved macrophage function by promoting pseudopod formation and transitioning from a pro‐inflammatory M1 to a pro‐reparative M2 phenotype. In vivo studies show that the surface‐engineered implants effectively promoted tissue integration via M2 macrophage polarization, resulting in a favorable immunomodulatory environment, and increased collagen deposition. Proteomic analyses show that the tissues in the vicinity of the surface‐engineered Zn implants are enriched with proteins related to key wound healing biological mechanisms such as cell adhesion, cytoskeletal structural arrangement, and immune response. This study highlights the improved biocompatibility and anti‐inflammatory effects of surface‐engineered Zn, with important implications for the clinical translation of biodegradable Zn‐based orthopedic implants.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Biomimetic Surface Nanoengineering of Biodegradable Zn‐Based Orthopedic Implants for Enhanced Biocompatibility and Immunomodulation ; day:02 ; month:09 ; year:2024 ; extent:23
Advanced functional materials ; (02.09.2024) (gesamt 23)

Creator
Xiang, Enmao
Vaquette, Cedryck
Liu, Shulei
Raveendran, Nimal
Schulz, Benjamin L.
Nowwarote, Nunthawan
Dargusch, Matthew
Abdal‐hay, Abdalla
Fournier, Benjamin P. J.
Ivanovski, Sašo

DOI
10.1002/adfm.202410033
URN
urn:nbn:de:101:1-2409021440596.812438933397
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Xiang, Enmao
  • Vaquette, Cedryck
  • Liu, Shulei
  • Raveendran, Nimal
  • Schulz, Benjamin L.
  • Nowwarote, Nunthawan
  • Dargusch, Matthew
  • Abdal‐hay, Abdalla
  • Fournier, Benjamin P. J.
  • Ivanovski, Sašo

Other Objects (12)