Arbeitspapier
Generalized Tukey-type distributions with application to financial and teletraffic data
Constructing skew and heavy-tailed distributions by transforming a standard normal variable goes back to Tukey (1977) and was extended and formalized by Hoaglin (1983) and Martinez & Iglewicz (1984). Applications of Tukey's GH distribution family - which are composed by a skewness transformation G and a kurtosis transformation H - can be found, for instance, in financial, environmental or medical statistics. Recently, alternative transformations emerged in the literature. Rayner & MacGillivray (2002b) discuss the GK distributions, where Tukey's H-transformation is replaced by another kurtosis transformation K. Similarly, Fischer & Klein (2004) advocate the J-transformation which also produces heavy tails but - in contrast to Tukey's H-transformation - still guarantees the existence of all moments. Within this work we present a very general kurtosis transformation which nests H-, K- and J-transformation and, hence, permits to discriminate between them. Applications to financial and teletraffic data are given.
- Sprache
-
Englisch
- Erschienen in
-
Series: Diskussionspapier ; No. 72/2006
- Klassifikation
-
Wirtschaft
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Fischer, Matthias J.
- Ereignis
-
Veröffentlichung
- (wer)
-
Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie
- (wo)
-
Nürnberg
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Fischer, Matthias J.
- Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie
Entstanden
- 2006