Arbeitspapier

Generalized Tukey-type distributions with application to financial and teletraffic data

Constructing skew and heavy-tailed distributions by transforming a standard normal variable goes back to Tukey (1977) and was extended and formalized by Hoaglin (1983) and Martinez & Iglewicz (1984). Applications of Tukey's GH distribution family - which are composed by a skewness transformation G and a kurtosis transformation H - can be found, for instance, in financial, environmental or medical statistics. Recently, alternative transformations emerged in the literature. Rayner & MacGillivray (2002b) discuss the GK distributions, where Tukey's H-transformation is replaced by another kurtosis transformation K. Similarly, Fischer & Klein (2004) advocate the J-transformation which also produces heavy tails but - in contrast to Tukey's H-transformation - still guarantees the existence of all moments. Within this work we present a very general kurtosis transformation which nests H-, K- and J-transformation and, hence, permits to discriminate between them. Applications to financial and teletraffic data are given.

Language
Englisch

Bibliographic citation
Series: Diskussionspapier ; No. 72/2006

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Fischer, Matthias J.
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie
(where)
Nürnberg
(when)
2006

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fischer, Matthias J.
  • Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie

Time of origin

  • 2006

Other Objects (12)