Artikel

A naïve approach to speed up portfolio optimization problem using a multiobjective genetic algorithm

Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean.variance (VaR) efficient frontier as minimising VaR leads to non.convex and non.differential risk.return optimisation problems. However GAs are a time.consuming optimisation technique. In this paper, we propose to use a naive approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in a reasonable computation time. Our results show that using reduced problems which only consider a quartile of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first quartile of assets is from 1% to 1.3% level of VaR.

Language
Englisch

Bibliographic citation
Journal: Investigaciones Europeas de Dirección y Economía de la Empresa (IEDEE) ; ISSN: 1135-2523 ; Volume: 18 ; Year: 2012 ; Issue: 2 ; Pages: 126-131 ; Amsterdam: Elsevier

Classification
Management
Portfolio Choice; Investment Decisions
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Subject
efficient portfolio
genetic algorithm
value.at.Risk

Event
Geistige Schöpfung
(who)
Baixauli-Soler, J. Samuel
Alfaro-Cid, Eva
Fernandez-Blanco, Matilde O.
Event
Veröffentlichung
(who)
Elsevier
(where)
Amsterdam
(when)
2012

DOI
doi:10.1016/S1135-2523(12)70002-3
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Baixauli-Soler, J. Samuel
  • Alfaro-Cid, Eva
  • Fernandez-Blanco, Matilde O.
  • Elsevier

Time of origin

  • 2012

Other Objects (12)