NV-plasmonics: modifying optical emission of an NV − center via plasmonic metal nanoparticles

Abstract: The nitrogen-vacancy (NV) center in diamond is very sensitive to magnetic and electric fields, strain, and temperature. In addition, it is possible to optically interrogate individual defects, making it an ideal quantum-limited sensor with nanoscale resolution. A key limitation for the application of NV sensing is the optical brightness and collection efficiency of these defects. Plasmonic resonances of metal nanoparticles have been used in a variety of applications to increase the brightness and efficiency of quantum emitters, and therefore are a promising tool to improve NV sensing. However, the interaction between NV centers and plasmonic structures is largely unexplored. In particular, the back-action between NV and plasmonic nanoparticles is nonlinear and depends on optical wavelength, nanoparticle position, and metal type. Here we present the general theory of NV-plasmonic nanoparticle interactions. We detail how the interplay between NV response, including optical and vibrational signatures, and the plasmonic response of the metal nanoparticle results in modifications to the emission spectra. Our model is able to explain quantitatively the existing experimental measurements of NV centers near metal nanoparticles. In addition, it provides a pathway to developing new plasmonic structures to improve readout efficiencies in a range of applications for the NV center. This will enable higher precision sensors, with greater bandwidth as well as new readout modalities for quantum computing and communication.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
NV-plasmonics: modifying optical emission of an NV − center via plasmonic metal nanoparticles ; volume:11 ; number:21 ; year:2022 ; pages:4919-4927 ; extent:9
Nanophotonics ; 11, Heft 21 (2022), 4919-4927 (gesamt 9)

Creator
Hapuarachchi, Harini
Campaioli, Francesco
Cole, Jared H.

DOI
10.1515/nanoph-2022-0429
URN
urn:nbn:de:101:1-2022113013413992425041
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:36 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hapuarachchi, Harini
  • Campaioli, Francesco
  • Cole, Jared H.

Other Objects (12)