Collision Avoidance by Identifying Risks for Detected Objects in Autonomous Vehicles

Abstract: We propose a system which will detect objects on our roads, estimate the distance of these object from the camera and alert the driver if this distance is equal or less than the threshold value(02meters),and assist the driver and alert him as soon as possible in order for him to take appropriate actions as soon as possible which can avoid any collision or significantly reduce it. We plan to use state of the arts object detection models like YOLO to identify the target object classes and use depth maps from monocular camera to be give an accurate estimate of the distance of the detected object from the camera. one major requirement of this system is the real-time behaviour and a high accuracy for the detected and estimated distance, A second requirement is to make the system cheap and easy useable comparatively to the other existing methods. That is why we decided to use monocular camera images and depth maps which makes the solution cheap and innovative. This project (prototype) pr.... https://www.bibliothek.tu-chemnitz.de/ojs/index.php/cs/article/view/472

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Collision Avoidance by Identifying Risks for Detected Objects in Autonomous Vehicles ; volume:7 ; number:1 ; day:15 ; month:03 ; year:2021
Embedded selforganising systems ; 7, Heft 1 (15.03.2021)

Urheber
Hasn, Haidr Ghasn
Ali, Majed

DOI
10.14464/ess.v7i1.472
URN
urn:nbn:de:101:1-2023032815454310801256
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hasn, Haidr Ghasn
  • Ali, Majed

Ähnliche Objekte (12)