Arbeitspapier
Dividend momentum and stock return predictability: A Bayesian approach
A long tradition in macro finance studies the joint dynamics of aggregate stock returns and dividends using vector autoregressions (VARs), imposing the cross-equation restrictions implied by the Campbell-Shiller (CS) identity to sharpen inference. We take a Bayesian perspective and develop methods to draw from any posterior distribution of a VAR that encodes a priori skepticism about large amounts of return predictability while imposing the CS restrictions. In doing so, we show how a common empirical practice of omitting dividend growth from the system amounts to imposing the extra restriction that dividend growth is not persistent. We highlight that persistence in dividend growth induces a previously overlooked channel for return predictability, which we label "dividend momentum." Compared to estimation based on ordinary least squares, our restricted informative prior leads to a much more moderate, but still significant, degree of return predictability, with forecasts that are helpful out of sample and realistic asset allocation prescriptions with Sharpe ratios that outperform common benchmarks.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 2021-25
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
Money and Interest Rates: Forecasting and Simulation: Models and Applications
- Thema
-
CS restrictions
Bayesian VAR
optimal allocation
Dividende
Börsenkurs
Bayes-Statistik
Prognoseverfahren
USA
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Antolín-Díaz, Juan
Petrella, Ivan
Rubio-Ramírez, Juan Francisco
- Ereignis
-
Veröffentlichung
- (wer)
-
Federal Reserve Bank of Atlanta
- (wo)
-
Atlanta, GA
- (wann)
-
2021
- DOI
-
doi:10.29338/wp2021-25
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Antolín-Díaz, Juan
- Petrella, Ivan
- Rubio-Ramírez, Juan Francisco
- Federal Reserve Bank of Atlanta
Entstanden
- 2021