Deep Learning‐Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording

Abstract: The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole‐cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi‐class classification. The anomaly detection excludes recordings that are incompatible with ion channel behavior. The multi‐class classification combined a 1D convolutional neural network, bidirectional long short‐term memory, and an attention mechanism to capture the spatiotemporal patterns of the recordings. The framework achieves an accuracy of 97.58% in classifying 124 test datasets into six categories based on ion channel kinetics. The utility of the novel framework is demonstrated in two applications: Alzheimer's disease drug screening and nanomatrix‐induced neuronal differentiation. In drug screening, the framework illustrates the inhibitory effects of memantine on endogenous channels, and antagonistic interactions among potassium, magnesium, and calcium ion channels. For nanomatrix‐induced differentiation, the classifier indicates the effects of differentiation conditions on sodium and potassium channels associated with action potentials, validating the functional properties of differentiated neurons for Parkinson's disease treatment. The proposed framework is promising for enhancing the efficiency and accuracy of ion channel kinetics analysis in electrophysiological research.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Deep Learning‐Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording ; day:31 ; month:12 ; year:2024 ; extent:17
Advanced science ; (31.12.2024) (gesamt 17)

Creator
Yang, Shengjie
Xue, Jiaqi
Li, Ziqi
Zhang, Shiqing
Zhang, Zhang
Huang, Zhifeng
Yung, Ken Kin Lam
Lai, King Wai Chiu

DOI
10.1002/advs.202404166
URN
urn:nbn:de:101:1-2412311313141.803753872504
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Yang, Shengjie
  • Xue, Jiaqi
  • Li, Ziqi
  • Zhang, Shiqing
  • Zhang, Zhang
  • Huang, Zhifeng
  • Yung, Ken Kin Lam
  • Lai, King Wai Chiu

Other Objects (12)