Artikel

High risk of a housing bubble in Germany and most OECD countries

Housing prices in many countries have increased significantly over the past years, fueling a fear that speculative price bubbles will return. However, it can be difficult for policymakers to recognize when regulatory interventions in the market are necessary to counteract bubbles. This report shows how modern machine learning methods can be used to forecast speculative price bubbles at an early stage. Early warning models show that many OECD countries have an increased risk of speculative bubbles. In Germany, there are explosive price developments that have decoupled from real estate earnings. However, the forecast model indicates that the risk will decrease somewhat over the coming months at a high level. Unfortunately, the preventative measures in Germany remain insufficient. For example, there is a lack of intervention options involving household debt ceilings, and it is unclear when the Federal Financial Supervisory Authority (BaFin) can begin intervening in the market.

Sprache
Englisch

Erschienen in
Journal: DIW Weekly Report ; ISSN: 2568-7697 ; Volume: 9 ; Year: 2019 ; Issue: 32 ; Pages: 265-273 ; Berlin: Deutsches Institut für Wirtschaftsforschung (DIW)

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Forecasting Models; Simulation Methods
Business Fluctuations; Cycles
Thema
early warning system
speculative housing price bubble
panel logit,decision tree
random forest
support vector machine

Ereignis
Geistige Schöpfung
(wer)
Cholodilin, Konstantin A.
Michelsen, Claus
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2019

DOI
doi:10.18723/diw_dwr:2019-32-1
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Cholodilin, Konstantin A.
  • Michelsen, Claus
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2019

Ähnliche Objekte (12)