Arbeitspapier
A geoadditive Bayesian latent variable model for Poisson indicators
We introduce a new latent variable model with count variable indicators, where usual linear parametric effects of covariates, nonparametric effects of continuous covariates and spatial effects on the continuous latent variables are modelled through a geoadditive predictor. Bayesian modelling of nonparametric functions and spatial effects is based on penalized spline and Markov random field priors. Full Bayesian inference is performed via an auxiliary variable Gibbs sampling technique, using a recent suggestion of Fr¨uhwirth-Schnatter and Wagner (2006). As an advantage, our Poisson indicator latent variable model can be combined with semiparametric latent variable models for mixed binary, ordinal and continuous indicator variables within an unified and coherent framework for modelling and inference. A simulation study investigates performance, and an application to post war human security in Cambodia illustrates the approach.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Paper ; No. 508
- Thema
-
Latent variable models
Poisson indicators
penalized splines
spatial effects
MCMC
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Fahrmeir, Ludwig
Steinert, Sven
- Ereignis
-
Veröffentlichung
- (wer)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (wo)
-
München
- (wann)
-
2006
- DOI
-
doi:10.5282/ubm/epub.1877
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1877-4
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Fahrmeir, Ludwig
- Steinert, Sven
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Entstanden
- 2006