Arbeitspapier

Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization

This paper considers the portfolio problem for high dimensional data when the dimension and size are both large.We analyze the traditional Markowitz mean-variance (MV) portfolio by large dimension matrix theory, and find the spectral distribution of the sample covariance is the main factor to make the expected return of the traditional MV portfolio overestimate the theoretical MV portfolio. A correction is suggested to the spectral construction of the sample covariances to be the sample spectrally corrected covariance, and to improve the traditional MV portfolio to be spectrally corrected. In the expressions of the expected return and risk on the MV portfolio, the population covariance matrix is always a quadratic form, which will direct MV portfolio estimation. We provide the limiting behavior of the quadratic form with the sample spectrally-corrected covariance matrix, and explain the superior performance to the sample covariance as the dimension increases to infinity proportionally with the sample size. Moreover, this paper deduces the limiting behavior of the expected return and risk on the spectrally-corrected MV portfolio, and illustrates the superior properties of the spectrally-corrected MV portfolio. In simulations, we compare the spectrally-corrected estimates with the traditional and bootstrap-corrected estimates, and show the performance of the spectrally-corrected estimates are the best in portfolio returns and portfolio risk. We also compare the performance of the new proposed estimation with different optimal portfolio estimates for real data from S&P 500. The empirical findings are consistent with the theory developed in the paper.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 16-025/III

Classification
Wirtschaft
Estimation: General
Optimization Techniques; Programming Models; Dynamic Analysis
Portfolio Choice; Investment Decisions
Subject
Markowitz Mean-Variance Optimization
Optimal Return
Optimal Portfolio Allocation
Large Random Matrix
Bootstrap Method
Spectrally-corrected Covariance Matrix

Event
Geistige Schöpfung
(who)
Bai, Zhidong
Li, Hua
McAleer, Michael
Wong, Wing-Keung
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2016

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bai, Zhidong
  • Li, Hua
  • McAleer, Michael
  • Wong, Wing-Keung
  • Tinbergen Institute

Time of origin

  • 2016

Other Objects (12)