Arbeitspapier

Penalized partial least squares based on B-Splines transformations

We propose a novel method to model nonlinear regression problems by adapting the principle of penalization to Partial Least Squares (PLS). Starting with a generalized additive model, we expand the additive component of each variable in terms of a generous amount of B-Splines basis functions. In order to prevent overfitting and to obtain smooth functions, we estimate the regression model by applying a penalized version of PLS. Although our motivation for penalized PLS stems from its use for B-Splines transformed data, the proposed approach is very general and can be applied to other penalty terms or to other dimension reduction techniques. It turns out that penalized PLS can be computed virtually as fast as PLS. We prove a close connection of penalized PLS to the solution of preconditioned linear systems. In the case of high-dimensional data, the new method is shown to be an attractive competitor to other techniques for estimating generalized additive models. If he number of predictor variables is high compared to the number of examples, traditional techniques often suffer from overfitting. We illustrate that penalized PLS performs well in these situations. - generalized additive model ; dimension reduction ; nonlinear regression ; conjugate gradient

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 485

Event
Geistige Schöpfung
(who)
Krämer, Nicole
Boulesteix, Anne-Laure
Tutz, Gerhard
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2006

DOI
doi:10.5282/ubm/epub.1853
Handle
URN
urn:nbn:de:bvb:19-epub-1853-2
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Krämer, Nicole
  • Boulesteix, Anne-Laure
  • Tutz, Gerhard
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2006

Other Objects (12)