Chemically Fuelled Self‐Regulating Gel‐to‐Gel Transition

Abstract: Artificial self‐regulating materials can be prepared by exploiting fuel‐driven pathways. Dynamic covalent bonds are formed and broken reversibly under mild reaction conditions. Herein, we utilise this concept to programme a system that can undergo a fuel‐driven self‐regulated gel‐to‐gel transition. The reaction between the gelator and the fuel resulted in a change in chemical structure of the gelator that initially causes a transition from a solution to gel state by co‐assembly. With time, the intermediate complex collapses, re‐forming the gelator structure. However, the gel does not collapse. This method allows us to prepare gels with improved mechanical strength. Unlike conventional gel‐to‐gel transitions, exploitation of dynamic covalent chemistry provides an opportunity to access materials that cannot be prepared directly under similar final conditions.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Chemically Fuelled Self‐Regulating Gel‐to‐Gel Transition ; volume:2 ; number:1 ; year:2020 ; extent:5
ChemSystemsChem ; 2, Heft 1 (2020) (gesamt 5)

Creator
Panja, Santanu
Dietrich, Bart
Adams, Dave J.

DOI
10.1002/syst.201900038
URN
urn:nbn:de:101:1-2022062910513141911295
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Panja, Santanu
  • Dietrich, Bart
  • Adams, Dave J.

Other Objects (12)