A novel anisotropic stress‐driven model for bioengineered tissues accounting for remodeling and reorientation based on homeostatic surfaces

Abstract: A co‐rotated formulation of the intermediate configuration is derived in a thermodynamically consistent manner. As a result of this formulation, algorithmic differentiation (AD) and the equations of the material model can be combined directly, i.e., the equations can be implemented into the AD tool and the corresponding derivatives can be calculated using AD. This is not possible when the equations are given in terms of the intermediate configuration, since the multiplicative decomposition suffers from an inherent rotational non‐uniqueness. Moreover, a novel stress‐driven kinematic growth model is presented that takes homeostasis and fiber reorientation into account and is based on the co‐rotated formulation. A numerical example reveals the promising potential of both the co‐rotated formulation and the stress‐driven growth model.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A novel anisotropic stress‐driven model for bioengineered tissues accounting for remodeling and reorientation based on homeostatic surfaces ; volume:22 ; number:1 ; year:2023 ; extent:0
Proceedings in applied mathematics and mechanics ; 22, Heft 1 (2023) (gesamt 0)

Urheber

DOI
10.1002/pamm.202200015
URN
urn:nbn:de:101:1-2023032514245341287930
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:00 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)