Understanding and Hindering the Electron Leakage in Green InP Quantum‐Dot Light‐Emitting Diodes

Indium phosphide (InP) quantum‐dot light‐emitting diodes (QLEDs) are considered as one of the most promising candidates for emerging displays owing to their good luminous performance and environmentally friendly properties. The operation of green InP QLEDs relies on the radiative recombination of electrically generated excitons, as in most QLEDs; however, the electrons injected into green InP QLEDs can easily pass through the quantum‐dot (QD) layer, resulting in a carrier imbalance and low external quantum efficiency (EQE). Herein, the mechanism of electron leakage in green InP QLEDs is revealed. Based on comparative experiments and simulations of the carrier concentration distribution, the path of electron leakage is determined and it is found that the root cause is the large Fermi energy difference between green InP QDs and indium tin oxide (ITO). To solve this problem, an ultrathin LiF layer is applied to modify the work function of the ITO, which simultaneously hinders electron leakage and enhances hole injection. Benefiting from a more balanced carrier injection, the maximum EQE of green InP QLEDs improves from 4.70% to 9.14%. In these findings, a universal mechanism is provided for hindering electron leakage in green InP QLEDs, indicating the feasibility of developing highly efficient green InP QLEDs.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Understanding and Hindering the Electron Leakage in Green InP Quantum‐Dot Light‐Emitting Diodes ; day:06 ; month:09 ; year:2023 ; extent:8
Advanced photonics research ; (06.09.2023) (gesamt 8)

Creator
Zhang, Tianqi
Zhao, Fangqing
Liu, Pai
Tan, Yangzhi
Xiao, Xiangtian
Wang, Zhaojin
Wang, Weigao
Wu, Dan
Sun, Xiao Wei
Hao, Jianhua
Xing, Guichuan
Wang, Kai

DOI
10.1002/adpr.202300146
URN
urn:nbn:de:101:1-2023090715015073648904
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.20252025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhang, Tianqi
  • Zhao, Fangqing
  • Liu, Pai
  • Tan, Yangzhi
  • Xiao, Xiangtian
  • Wang, Zhaojin
  • Wang, Weigao
  • Wu, Dan
  • Sun, Xiao Wei
  • Hao, Jianhua
  • Xing, Guichuan
  • Wang, Kai

Other Objects (12)