Designing all-pay auctions using deep learning and multi-agent simulation

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISSN
2045-2322
Extent
Online-Ressource
Language
Englisch
Notes
online resource.

Bibliographic citation
Designing all-pay auctions using deep learning and multi-agent simulation ; volume:12 ; number:1 ; day:8 ; month:10 ; year:2022 ; pages:1-15 ; date:12.2022
Scientific reports ; 12, Heft 1 (8.10.2022), 1-15, 12.2022

Creator
Gemp, Ian
Anthony, Thomas
Kramar, Janos
Eccles, Tom
Tacchetti, Andrea
Bachrach, Yoram
Contributor
SpringerLink (Online service)

DOI
10.1038/s41598-022-20234-3
URN
urn:nbn:de:101:1-2022122621262532070888
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Gemp, Ian
  • Anthony, Thomas
  • Kramar, Janos
  • Eccles, Tom
  • Tacchetti, Andrea
  • Bachrach, Yoram
  • SpringerLink (Online service)

Other Objects (12)