Arbeitspapier
Nonparametric change-point analysis of volatility
This work develops change-point methods for statistics of high-frequency data. The main interest is the volatility of an Itô semi-martingale, which is discretely observed over a fixed time horizon. We construct a minimax-optimal test to discriminate different smoothness classes of the underlying stochastic volatility process. In a high-frequency framework we prove weak convergence of the test statistic under the hypothesis to an extreme value distribution. As a key example, under extremely mild smoothness assumptions on the stochastic volatility we thereby derive a consistent test for volatility jumps. A simulation study demonstrates the practical value in finite-sample applications.
- Language
- 
                Englisch
 
- Bibliographic citation
- 
                Series: SFB 649 Discussion Paper ; No. 2015-008
 
- Classification
- 
                Wirtschaft
 Hypothesis Testing: General
 Semiparametric and Nonparametric Methods: General
 
- Subject
- 
                high-frequency data
 nonparametric change-point test
 minimax-optimal test
 stochastic volatility
 volatility jumps
 
- Event
- 
                Geistige Schöpfung
 
- (who)
- 
                Bibinger, Markus
 Jirak, Moritz
 Vetter, Mathias
 
- Event
- 
                Veröffentlichung
 
- (who)
- 
                Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
 
- (where)
- 
                Berlin
 
- (when)
- 
                2015
 
- Handle
- Last update
- 
                
                    
                        10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bibinger, Markus
- Jirak, Moritz
- Vetter, Mathias
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2015
 
        
    