Arbeitspapier

Nonparametric change-point analysis of volatility

This work develops change-point methods for statistics of high-frequency data. The main interest is the volatility of an Itô semi-martingale, which is discretely observed over a fixed time horizon. We construct a minimax-optimal test to discriminate different smoothness classes of the underlying stochastic volatility process. In a high-frequency framework we prove weak convergence of the test statistic under the hypothesis to an extreme value distribution. As a key example, under extremely mild smoothness assumptions on the stochastic volatility we thereby derive a consistent test for volatility jumps. A simulation study demonstrates the practical value in finite-sample applications.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2015-008

Classification
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Subject
high-frequency data
nonparametric change-point test
minimax-optimal test
stochastic volatility
volatility jumps

Event
Geistige Schöpfung
(who)
Bibinger, Markus
Jirak, Moritz
Vetter, Mathias
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2015

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bibinger, Markus
  • Jirak, Moritz
  • Vetter, Mathias
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2015

Other Objects (12)