Arbeitspapier
Nonparametric change-point analysis of volatility
This work develops change-point methods for statistics of high-frequency data. The main interest is the volatility of an Itô semi-martingale, which is discretely observed over a fixed time horizon. We construct a minimax-optimal test to discriminate different smoothness classes of the underlying stochastic volatility process. In a high-frequency framework we prove weak convergence of the test statistic under the hypothesis to an extreme value distribution. As a key example, under extremely mild smoothness assumptions on the stochastic volatility we thereby derive a consistent test for volatility jumps. A simulation study demonstrates the practical value in finite-sample applications.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2015-008
- Classification
-
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
- Subject
-
high-frequency data
nonparametric change-point test
minimax-optimal test
stochastic volatility
volatility jumps
- Event
-
Geistige Schöpfung
- (who)
-
Bibinger, Markus
Jirak, Moritz
Vetter, Mathias
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2015
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bibinger, Markus
- Jirak, Moritz
- Vetter, Mathias
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2015