Nonlinear Sherman-type inequalities
Abstract: An important class of Schur-convex functions is generated by convex functions via the well-known Hardy–Littlewood–Pólya–Karamata inequality. Sherman’s inequality is a natural generalization of the HLPK inequality. It can be viewed as a comparison of two special inner product expressions induced by a convex function of one variable. In the present note, we extend the Sherman inequality from the (bilinear) inner product to a (nonlinear) map of two vectorial variables satisfying the Leon–Proschan condition. Some applications are shown for directional derivatives and gradients of Schur-convex functions.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Nonlinear Sherman-type inequalities ; volume:9 ; number:1 ; year:2018 ; pages:168-175 ; extent:8
Advances in nonlinear analysis ; 9, Heft 1 (2018), 168-175 (gesamt 8)
- Urheber
-
Niezgoda, Marek
- DOI
-
10.1515/anona-2018-0098
- URN
-
urn:nbn:de:101:1-2405021556368.324971577081
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:48 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Niezgoda, Marek