Nonlinear Sherman-type inequalities

Abstract: An important class of Schur-convex functions is generated by convex functions via the well-known Hardy–Littlewood–Pólya–Karamata inequality. Sherman’s inequality is a natural generalization of the HLPK inequality. It can be viewed as a comparison of two special inner product expressions induced by a convex function of one variable. In the present note, we extend the Sherman inequality from the (bilinear) inner product to a (nonlinear) map of two vectorial variables satisfying the Leon–Proschan condition. Some applications are shown for directional derivatives and gradients of Schur-convex functions.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Nonlinear Sherman-type inequalities ; volume:9 ; number:1 ; year:2018 ; pages:168-175 ; extent:8
Advances in nonlinear analysis ; 9, Heft 1 (2018), 168-175 (gesamt 8)

Urheber
Niezgoda, Marek

DOI
10.1515/anona-2018-0098
URN
urn:nbn:de:101:1-2405021556368.324971577081
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Niezgoda, Marek

Ähnliche Objekte (12)