De Novo Design of Bioactive Small Molecules by Artificial Intelligence

Abstract: Generative artificial intelligence offers a fresh view on molecular design. We present the first‐time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine‐tuned on recognizing retinoid X and peroxisome proliferator‐activated receptor agonists. We synthesized five top‐ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low‐micromolar receptor modulatory activity in cell‐based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
De Novo Design of Bioactive Small Molecules by Artificial Intelligence ; volume:37 ; number:1-2 ; year:2018 ; extent:4
Molecular informatics ; 37, Heft 1-2 (2018) (gesamt 4)

Urheber

DOI
10.1002/minf.201700153
URN
urn:nbn:de:101:1-2022082108003280517842
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:31 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)