Arbeitspapier

Predicting the global minimum variance portfolio

We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP). The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the optimal GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns' conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations combined with targeting towards nonlinear shrinkage estimates of the long-run GMVP weights ensure scalability with respect to the number of assets. An empirical analysis of daily and monthly financial returns shows that the proposed models perform well in- and out-of-sample in comparison to existing approaches.

Sprache
Englisch

Erschienen in
Series: KIT Working Paper Series in Economics ; No. 141

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Forecasting Models; Simulation Methods
Financial Econometrics
Portfolio Choice; Investment Decisions
Financial Forecasting and Simulation
Thema
Consistent loss function
Elicitability
Forecasting
Generalized autoregressivescore
Nonlinear shrinkage
Recursive least squares

Ereignis
Geistige Schöpfung
(wer)
Reh, Laura
Krüger, Fabian
Liesenfeld, Roman
Ereignis
Veröffentlichung
(wer)
Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)
(wo)
Karlsruhe
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Reh, Laura
  • Krüger, Fabian
  • Liesenfeld, Roman
  • Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)

Entstanden

  • 2020

Ähnliche Objekte (12)