Artikel

Dealing with misspecification in structural macroeconometric models

We consider a set of potentially misspecified structural models, geometrically combine their likelihood functions, and estimate the parameters using composite methods. In a Monte Carlo study, composite estimators dominate likelihood-based estimators in mean squared error and composite models are superior to individual models in the Kullback-Leibler sense. We describe Bayesian quasi-posterior computations and compare our approach to Bayesian model averaging, finite mixture, and robust control procedures. We robustify inference using the composite posterior distribution of the parameters and the pool of models. We provide estimates of the marginal propensity to consume and evaluate the role of technology shocks for output fluctuations.

Sprache
Englisch

Erschienen in
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 12 ; Year: 2021 ; Issue: 2 ; Pages: 313-350 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Estimation: General
Model Construction and Estimation
General Aggregative Models: Forecasting and Simulation: Models and Applications
Thema
Bayesian model averaging
composite likelihood
finite mixture
Model misspecification

Ereignis
Geistige Schöpfung
(wer)
Canova, Fabio
Matthes, Christian
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2021

DOI
doi:10.3982/QE1413
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Canova, Fabio
  • Matthes, Christian
  • The Econometric Society

Entstanden

  • 2021

Ähnliche Objekte (12)