Artikel
Dealing with misspecification in structural macroeconometric models
We consider a set of potentially misspecified structural models, geometrically combine their likelihood functions, and estimate the parameters using composite methods. In a Monte Carlo study, composite estimators dominate likelihood-based estimators in mean squared error and composite models are superior to individual models in the Kullback-Leibler sense. We describe Bayesian quasi-posterior computations and compare our approach to Bayesian model averaging, finite mixture, and robust control procedures. We robustify inference using the composite posterior distribution of the parameters and the pool of models. We provide estimates of the marginal propensity to consume and evaluate the role of technology shocks for output fluctuations.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 12 ; Year: 2021 ; Issue: 2 ; Pages: 313-350 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Estimation: General
Model Construction and Estimation
General Aggregative Models: Forecasting and Simulation: Models and Applications
- Thema
-
Bayesian model averaging
composite likelihood
finite mixture
Model misspecification
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Canova, Fabio
Matthes, Christian
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2021
- DOI
-
doi:10.3982/QE1413
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Canova, Fabio
- Matthes, Christian
- The Econometric Society
Entstanden
- 2021