Arbeitspapier

Weighted Sums of Subexponential Random Variables and Asymptotic Dependence between Returns on Reinsurance Equities

Suppose are independent subexponential random variables with partial sums. We show that if the pairwise sums of the ’s are subexponential, then is subexponential and . The result is applied to give conditions under which as , where are constants such that is a.s. convergent. Asymptotic tail probabilities for bivariate linear combinations of subexponential random variables are given. These results are applied to explain the joint movements of the stocks of reinsurers. Portfolio investment and retrocession practices in the reinsurance industry expose different reinsurers to the same subexponential risks on both sides of their balance sheets. This implies that reinsurer’s equity returns can be asymptotically dependent, exposing the industry to systemic risk.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 04-102/2

Klassifikation
Wirtschaft
Thema
Subexponentiality
regular variation
systemic risk
asymptotic dependence
Rückversicherung
Risikomodell
Versicherungsmathematik

Ereignis
Geistige Schöpfung
(wer)
Geluk, J.L.
de Vries, C.G.
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Geluk, J.L.
  • de Vries, C.G.
  • Tinbergen Institute

Entstanden

  • 2004

Ähnliche Objekte (12)