A Multiscale and Multimethod Approach to Assess and Mitigate Concrete Damage Due to Alkali–Silica Reaction

Alkali–silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The study aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro‐ to the micro‐level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently, the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical, and X‐ray methods, to the development of a testing methodology for existing concrete pavements including in‐depth analysis of the visual damage indicator and the deicing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A Multiscale and Multimethod Approach to Assess and Mitigate Concrete Damage Due to Alkali–Silica Reaction ; day:24 ; month:05 ; year:2022 ; extent:36
Advanced engineering materials ; (24.05.2022) (gesamt 36)

Creator
Weise, Frank
von Werder, Julia
Manninger, Tanja
Maier, Bärbel
Fladt, Matthias
Simon, Sebastian
Gardei, André
Hoehnel, Desirée
Pirskawetz, Stephan
Meng, Birgit

DOI
10.1002/adem.202101346
URN
urn:nbn:de:101:1-2022052515100075090235
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:39 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Weise, Frank
  • von Werder, Julia
  • Manninger, Tanja
  • Maier, Bärbel
  • Fladt, Matthias
  • Simon, Sebastian
  • Gardei, André
  • Hoehnel, Desirée
  • Pirskawetz, Stephan
  • Meng, Birgit

Other Objects (12)