Arbeitspapier

Forecasting economic activity using a neural network in uncertain times: Monte Carlo evidence and application to the German GDP

In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between "normal" times and situations where the time-series behavior is very different from "normal" times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.

Sprache
Englisch

Erschienen in
Series: IWH Discussion Papers ; No. 6/2024

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
Thema
forecasting
neural network
nowcasting
time series models

Ereignis
Geistige Schöpfung
(wer)
Holtemöller, Oliver
Kozyrev, Boris
Ereignis
Veröffentlichung
(wer)
Halle Institute for Economic Research (IWH)
(wo)
Halle (Saale)
(wann)
2024

URN
urn:nbn:de:gbv:3:2-1054615
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Holtemöller, Oliver
  • Kozyrev, Boris
  • Halle Institute for Economic Research (IWH)

Entstanden

  • 2024

Ähnliche Objekte (12)