Arbeitspapier
Forecasting economic activity using a neural network in uncertain times: Monte Carlo evidence and application to the German GDP
In this study, we analyzed the forecasting and nowcasting performance of a generalized regression neural network (GRNN). We provide evidence from Monte Carlo simulations for the relative forecast performance of GRNN depending on the data-generating process. We show that GRNN outperforms an autoregressive benchmark model in many practically relevant cases. Then, we applied GRNN to forecast quarterly German GDP growth by extending univariate GRNN to multivariate and mixed-frequency settings. We could distinguish between "normal" times and situations where the time-series behavior is very different from "normal" times such as during the COVID-19 recession and recovery. GRNN was superior in terms of root mean forecast errors compared to an autoregressive model and to more sophisticated approaches such as dynamic factor models if applied appropriately.
- Sprache
-
Englisch
- Erschienen in
-
Series: IWH Discussion Papers ; No. 6/2024
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Neural Networks and Related Topics
Forecasting Models; Simulation Methods
- Thema
-
forecasting
neural network
nowcasting
time series models
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Holtemöller, Oliver
Kozyrev, Boris
- Ereignis
-
Veröffentlichung
- (wer)
-
Halle Institute for Economic Research (IWH)
- (wo)
-
Halle (Saale)
- (wann)
-
2024
- URN
-
urn:nbn:de:gbv:3:2-1054615
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Holtemöller, Oliver
- Kozyrev, Boris
- Halle Institute for Economic Research (IWH)
Entstanden
- 2024