Artikel

Symmetric and Asymmetric Volatility Clustering Via GARCH Family Models: An Evidence from Religion Dominant Countries

Volatility clustering and asymmetry are considered as an essential element in time series data analysis for portfolio managers. This study is conducted to analyze the volatility clustering and asymmetry occurrence by employing different GARCH models. Data is collected from 11 Religion Dominant Countries (RDCs) based on daily stock returns from 2011 to 2017. The findings of the study show that volatility clustering increases the asymmetric comportment of daily stock market returns. We estimated the analytical competence of GARCH models and found that GJR-GARCH and EGARCH executed better results than GARCH (p, q) in RDCs stock markets. It also shows that GJR-GARCH and EGAECH explain the asymmetric behavior along with an accurate assessment of volatility clustering for the selected 11 RDCs stock markets. This study helps managers, investors, and corporations to make investment-related decisions.

Sprache
Englisch

Erschienen in
Journal: Paradigms ; ISSN: 2410-0854 ; Volume: 13 ; Year: 2019 ; Issue: 1 ; Pages: 20-25 ; Lahore: University of Central Punjab

Klassifikation
Wirtschaft
Information and Market Efficiency; Event Studies; Insider Trading
Thema
Volatility Clustering
Religion Dominant Countries
Market Returns
Asymmetric Behavior
GARCH
GJR-GARCH
EGARCH

Ereignis
Geistige Schöpfung
(wer)
Khan, Muhammad Salman
Khan, Kanwal Iqbal
Mahmood, Shahid
Sheeraz, Muhammad
Ereignis
Veröffentlichung
(wer)
University of Central Punjab
(wo)
Lahore
(wann)
2019

DOI
doi:10.24312/1900148130104
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Khan, Muhammad Salman
  • Khan, Kanwal Iqbal
  • Mahmood, Shahid
  • Sheeraz, Muhammad
  • University of Central Punjab

Entstanden

  • 2019

Ähnliche Objekte (12)