The mathematics of arbitrage

This long-awaited book aims at a rigorous mathematical treatment of the theory of pricing and hedging of derivative securities by the principle of 'no arbitrage'. The first part presents a relatively elementary introduction, restricting itself to the case of finite probability spaces. The second part consists of an updated edition of seven original research papers by the authors, which analyse the topic in the general framework of semi-martingale theory. TOC:Models on Finite Probability Spaces.- The Kreps-Yan Theorem.- The Dalang-Morton-Willinger-Theorem.- The Continuous Time Model.- Bachelier and the Black-Scholes.- The No-Arbitrage Theory for General Processes.- A General Version of Fundamental Theorem of Asset Pricing.- The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes.- A Compactness Principle for Bounded Sequences of Martingales with Applications.- The Banach Space Workable Contingent Claims in Arbitrage Theory.- The Existence of Absolutely Continuous Local Martingale Measures.- The No-Arbitrage Property Under a Change of Numéraire.- A Simple Counter-Example to Several Problems in the Theory of Asset Pricing, Which Arises in Many Incomplete Markets

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
9783540219927
3540219927
Dimensions
24 cm
Extent
XVI, 373 S.
Language
Englisch
Notes
Literaturverz. S. 359 - 373

Classification
Wirtschaft
Keyword
Capital-Asset-Pricing-Modell
Arbitrage-Pricing-Theorie
Stochastisches Modell
Semimartingal

Event
Veröffentlichung
(where)
Berlin, Heidelberg, New York
(who)
Springer
(when)
2006
Creator

Table of contents
Rights
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Last update
11.06.2025, 1:32 PM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2006

Other Objects (12)