Homogenization of oblique boundary value problems

Abstract: We consider a nonlinear Neumann problem, with periodic oscillation in the elliptic operator and on the boundary condition. Our focus is on problems posed in half-spaces, but with general normal directions that may not be parallel to the directions of periodicity. As the frequency of the oscillation grows, quantitative homogenization results are derived. When the homogenized operator is rotation-invariant, we prove the Hölder continuity of the homogenized boundary data. While we follow the outline of Choi and Kim (Homogenization for nonlinear PDEs in general domains with oscillatory Neumann boundary data, Journal de Mathématiques Pures et Appliquées 102 (2014), no. 2, 419–448), new challenges arise due to the presence of tangential derivatives on the boundary condition in our problem. In addition, we improve and optimize the rate of convergence within our approach. Our results appear to be new even for the linear oblique problem.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Homogenization of oblique boundary value problems ; volume:23 ; number:1 ; year:2023 ; extent:29
Advanced nonlinear studies ; 23, Heft 1 (2023) (gesamt 29)

Creator
Choi, Sunhi
Kim, Inwon C.

DOI
10.1515/ans-2022-0051
URN
urn:nbn:de:101:1-2023030913413245269093
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:03 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Choi, Sunhi
  • Kim, Inwon C.

Other Objects (12)