Arbeitspapier

The Pricing of Derivatives on Assets with Quadratic Volatility

The basic model of financial economics is the Samuelson model of geometric Brownian motion because of the celebrated Black-Scholes formula for pricing the call option. The asset's volatility is a linear function of the asset value and the model garantees positive asset prices. In this paper it is shown that the pricing partial differential equation can be solved for level-dependent volatility which is a quadratic polynomial. If zero is attainable, both absorption and negative asset values are possible. Explicit formulae are derived for the call option: a generalization of the Black-Scholes formula for an asset whose volatiliy is affine, the formula for the Bachelier model with constant volatility, and new formulae in the case of quadratic volatility. The implied Black-Scholes volatilities of the Bachelier and the affine model are frowns, the quadratic specifications imply smiles.

Sprache
Englisch

Erschienen in
Series: Bonn Econ Discussion Papers ; No. 5/2002

Klassifikation
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Contingent Pricing; Futures Pricing; option pricing
Thema
strong solutions
stochastic differential equation
option pricing
quadratic volatility
implied volatility
smiles
frowns

Ereignis
Geistige Schöpfung
(wer)
Zühlsdorff, Christian
Ereignis
Veröffentlichung
(wer)
University of Bonn, Bonn Graduate School of Economics (BGSE)
(wo)
Bonn
(wann)
2002

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Zühlsdorff, Christian
  • University of Bonn, Bonn Graduate School of Economics (BGSE)

Entstanden

  • 2002

Ähnliche Objekte (12)