Arbeitspapier
The Pricing of Derivatives on Assets with Quadratic Volatility
The basic model of financial economics is the Samuelson model of geometric Brownian motion because of the celebrated Black-Scholes formula for pricing the call option. The asset's volatility is a linear function of the asset value and the model garantees positive asset prices. In this paper it is shown that the pricing partial differential equation can be solved for level-dependent volatility which is a quadratic polynomial. If zero is attainable, both absorption and negative asset values are possible. Explicit formulae are derived for the call option: a generalization of the Black-Scholes formula for an asset whose volatiliy is affine, the formula for the Bachelier model with constant volatility, and new formulae in the case of quadratic volatility. The implied Black-Scholes volatilities of the Bachelier and the affine model are frowns, the quadratic specifications imply smiles.
- Sprache
-
Englisch
- Erschienen in
-
Series: Bonn Econ Discussion Papers ; No. 5/2002
- Klassifikation
-
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Contingent Pricing; Futures Pricing; option pricing
- Thema
-
strong solutions
stochastic differential equation
option pricing
quadratic volatility
implied volatility
smiles
frowns
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Zühlsdorff, Christian
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Bonn, Bonn Graduate School of Economics (BGSE)
- (wo)
-
Bonn
- (wann)
-
2002
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Zühlsdorff, Christian
- University of Bonn, Bonn Graduate School of Economics (BGSE)
Entstanden
- 2002