Improving LIDAR-based tree species mapping in Central European mixed forests using multitemporal digital aerial colour-infrared photographs

Abstract: Digital colour-infrared (CIR) aerial photographs, which have been collected routinely in many parts of the world, are an invaluable data source for the monitoring and assessment of forest resources. Yet, the potential of these data for automated individual tree species mapping remains largely unexplored. One way to maximize the usefulness of digital CIR aerial photographs for individual tree species mapping is to integrate them with modern and complementary remote sensing technologies such as the light detection and ranging (LiDAR) system and 3D segmentation algorithms. In this study, we examined whether multi-temporal digital CIR orthophotos could be used to further increase the accuracy of airborne LiDAR-based individual tree species mapping for a temperate mixed forest in eastern Germany. Our results showed that the texture features captured by multi-temporal digital CIR orthophotos under different view-illumination conditions were species-specific. As a consequence, combining these texture features with LiDAR metrics significantly improved tree species mapping accuracy (overall accuracy: 77.4%, kappa: 0.68) compared to using LiDAR data alone (overall accuracy: 69.3%, kappa: 0.58). Among various texture features, the average gray level in the near-infrared band was found to contribute most to the classification. Our results suggest that the synergic use of multi-temporal digital aerial photographs and airborne LiDAR data has the potential to accurately classify individual tree species in Central European mixed forests

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
International journal of applied earth observation and geoinformation. - 84 (2020) , 101970, ISSN: 0303-2434

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2021
Urheber
Shi, Yifang
Wang, Tiejun
Skidmore, Andrew K.
Heurich, Marco

DOI
10.1016/j.jag.2019.101970
URN
urn:nbn:de:bsz:25-freidok-1936586
Rechteinformation
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:52 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Shi, Yifang
  • Wang, Tiejun
  • Skidmore, Andrew K.
  • Heurich, Marco
  • Universität

Entstanden

  • 2021

Ähnliche Objekte (12)