Artikel

Analysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using "Mahalanobis distance"

In recent years, as the weight of IT equipment has been reduced, the demand for motor fans for cooling the interior of electronic equipment is on the rise. Sensory test technique by inspectors is the mainstream for quality inspection of motor fans in the field. This sensory test requires a lot of experience to accurately diagnose differences in subtle sounds (sound pressures) of the fans, and the judgment varies depending on the condition of the inspector and the environment. In order to solve these quality problems, development of an analysis method capable of quantitatively and automatically diagnosing the sound/vibration level of a fan is required. In this study, it was clarified that the analysis method applying the MT system based on the waveform information of noise and vibration is more effective than the conventional frequency analysis method for the discrimination diagnosis technology of normal and abnormal items. Furthermore, it was found that due to the automation of the vibration waveform analysis system, there was a factor influencing the discrimination accuracy in relation between the fan installation posture and the vibration waveform.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 15 ; Year: 2019 ; Issue: 1 ; Pages: 81-92 ; Heidelberg: Springer

Klassifikation
Management
Thema
MT system
Mahalanobis distance (MD)
Feature value
Effectiveness analysis

Ereignis
Geistige Schöpfung
(wer)
Toma, Eiji
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2019

DOI
doi:10.1007/s40092-018-0274-6
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Toma, Eiji
  • Springer

Entstanden

  • 2019

Ähnliche Objekte (12)