Global Existence and Blowup for the Cubic Nonlinear Klein-Gordon Equations in Three Space Dimensions

Abstract: In this paper, we apply a cross-constrained variational method to study the classic nonlinear Klein-Gordon equation with cubic nonlinearity in three space dimensions. By constructing a type of cross-constrained variational problem and establishing the so-called cross invariant manifolds, we obtain a sharp threshold for blowup and global existence of the solution to the equation under study which is different from that in [10]. On the other hand, we give an answer to the question that how small the initial data have to be for the global solutions to exist.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Global Existence and Blowup for the Cubic Nonlinear Klein-Gordon Equations in Three Space Dimensions ; volume:10 ; number:2 ; year:2010 ; pages:315-329 ; extent:15
Advanced nonlinear studies ; 10, Heft 2 (2010), 315-329 (gesamt 15)

Creator
Zhang, Jian
Gan, Zaihui
Guo, Boling

DOI
10.1515/ans-2010-0205
URN
urn:nbn:de:101:1-2405021713368.057876922642
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:55 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhang, Jian
  • Gan, Zaihui
  • Guo, Boling

Other Objects (12)