Arbeitspapier

Causal inference in case-control studies

We investigate identification of causal parameters in case-control and related studies. The odds ratio in the sample is our main estimand of interest and we articulate its relationship with causal parameters under various scenarios. It turns out that the odds ratio is generally a sharp upper bound for counterfactual relative risk under some monotonicity assumptions, without resorting to strong ig-norability, nor to the rare-disease assumption. Further, we propose semparametrically efficient, easy-to-implement, machine-learning-friendly estimators of the aggregated (log) odds ratio by exploiting an explicit form of the efficient influence function. Using our new estimators, we develop methods for causal inference and illustrate the usefulness of our methods by a real-data example.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP19/20

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Large Data Sets: Modeling and Analysis
Survey Methods; Sampling Methods
Thema
relative risk
causality
monotonicity
case-control sample
machinelearning
partial identification
semiparametric efficiency bound

Ereignis
Geistige Schöpfung
(wer)
Jun, Sung Jae
Lee, Sokbae
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2020

DOI
doi:10.1920/wp.cem.2020.1920
Handle
Letzte Aktualisierung
20.09.2024, 08:23 MESZ

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jun, Sung Jae
  • Lee, Sokbae
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2020

Ähnliche Objekte (12)