3D Visible‐Light Invisibility Cloak

Abstract: The concept of an invisibility cloak is a fixture of science fiction, fantasy, and the collective imagination. However, a real device that can hide an object from sight in visible light from absolutely any viewpoint would be extremely challenging to build. The main obstacle to creating such a cloak is the coupling of the electromagnetic components of light, which would necessitate the use of complex materials with specific permittivity and permeability tensors. Previous cloaking solutions have involved circumventing this obstacle by functioning either in static (or quasistatic) fields where these electromagnetic components are uncoupled or in diffusive light scattering media where complex materials are not required. In this paper, concealing a large‐scale spherical object from human sight from three orthogonal directions is reported. This result is achieved by developing a 3D homogeneous polyhedral transformation and a spatially invariant refractive index discretization that considerably reduce the coupling of the electromagnetic components of visible light. This approach allows for a major simplification in the design of 3D invisibility cloaks, which can now be created at a large scale using homogeneous and isotropic materials.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
3D Visible‐Light Invisibility Cloak ; volume:5 ; number:6 ; year:2018 ; extent:4
Advanced science ; 5, Heft 6 (2018) (gesamt 4)

Creator
Zheng, Bin
Zhu, Rongrong
Jing, Liqiao
Yang, Yihao
Shen, Lian
Wang, Huaping
Wang, Zuojia
Zhang, Xianmin
Liu, Xu
Li, Erping
Chen, Hongsheng

DOI
10.1002/advs.201800056
URN
urn:nbn:de:101:1-2022090719193932582054
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zheng, Bin
  • Zhu, Rongrong
  • Jing, Liqiao
  • Yang, Yihao
  • Shen, Lian
  • Wang, Huaping
  • Wang, Zuojia
  • Zhang, Xianmin
  • Liu, Xu
  • Li, Erping
  • Chen, Hongsheng

Other Objects (12)