Artikel

Are agro‐clusters pro‐poor? Evidence from Ethiopia

Governments and development agencies increasingly promote agro‐clusters as a pathway to improving smallholder incomes and ensuring inclusive rural development through mitigating production and market risks. However, there is very limited empirical evidence to support this promise. We use a large farm household survey of about 4000 smallholder farmers in Ethiopia growing cereals like teff, maize, wheat, maltbarley and sesame to examine the relationship between agro‐clusters and smallholder welfare and poverty. Using instrumental variable estimators, we establish a positive association between agro‐clusters, household income and per capita income. Agro‐clusters are also shown to reduce poverty and poverty gaps. Our results are robust over different agro‐cluster proxies and alternative estimators, such as the augmented inverse probability weighting estimator. We also show that our findings are unlikely to be driven by omitted variable bias. Moving beyond average effects and in the interest of understanding heterogeneous effects, we use quantile regressions at different income levels. We find that agro‐clusters are associated with welfare gains for all households. However, the most significant gains are observed for the wealthier households. Despite this regressive association, our findings suggest that agro‐clusters may be useful in making farming more profitable with significant welfare implications.

Sprache
Englisch

Erschienen in
Journal: Journal of Agricultural Economics ; ISSN: 1477-9552 ; Volume: 74 ; Year: 2022 ; Issue: 1 ; Pages: 100-115 ; Hoboken, NJ: Wiley

Klassifikation
Landwirtschaft, Veterinärmedizin
Thema
agro‐clusters
Ethiopia
poverty
welfare

Ereignis
Geistige Schöpfung
(wer)
Jr Tabe‐Ojong, Martin Paul
Dureti, Guyo Godana
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2022

DOI
doi:10.1111/1477-9552.12497
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Jr Tabe‐Ojong, Martin Paul
  • Dureti, Guyo Godana
  • Wiley

Entstanden

  • 2022

Ähnliche Objekte (12)